

ChatGPT

Attached Deliverables: Please find the following files for download: (1) [bibliography.csv](#) – a comprehensive spreadsheet of sources with claims and details, (2) [fact_cards.csv](#) – compact claim→fact→source mappings, and (3) [top_30_sources.md](#) – a markdown reference list of the 30 most relevant sources (with “why it matters” and supported claims).

Summary of Coverage, Gaps, and Conflicts:

Claim Category	Coverage (Sources & Alignment)	Gaps / Needs	Conflicts / Differences
Capacity (MW vs kW) – Hyperscale vs Edge vs Enterprise sizing.	<p><i>Covered by multiple sources:</i></p> <p>JLL 1 and Dgtl Infra provide ranges (hyperscale 50–100+ MW vs edge ~50–500 kW; enterprise/colo in between). McKinsey (2025) reinforces hyperscale growth (200 MW now “normal”). All sources align that <i>hyperscalers operate at orders of magnitude larger scale</i> than typical enterprise or edge sites.</p>	<p><i>No major gaps:</i> Could use more real-world examples of enterprise DC capacities (most sources generalize ranges). However, current coverage sufficiently establishes typical load profiles for each category.</p>	<p>Definition variance: JLL’s definition of “edge” (up to 2 MW) 1 vs. Dgtl Infra’s stricter 0.5 MW upper bound – indicating <i>industry terminology varies</i>. Overall message is consistent (edge << hyperscale).</p>
Redundancy Models (N, N+1, 2N, 2N+1) – Uptime trade-offs.	<p><i>Well covered:</i> CoreSite and 123NET blogs define N vs N+1 vs 2N vs 2(N+1) with examples. All sources agree on what each level means (N+1 = one spare, 2N = full duplication, etc.) and their relative uptime (e.g. Tier IV ~99.995% vs Tier I ~99.671%). These independent sources (colocation providers and Uptime Institute data via CoreSite) corroborate each other on redundancy concepts.</p>	<p><i>No significant gaps:</i> Covered definitions and examples. Perhaps could include more on “<i>distributed redundancy</i>” (e.g. 3N/2), but this is beyond the main scope. Overall, redundancy tiers and uptime implications are documented with multiple sources.</p>	<p>No direct conflicts: Sources are in agreement. Only nuance: 123NET/ others note N+1 still has common-circuit risk. This nuance complements (doesn’t contradict) the general definitions. All sources consistently differentiate <i>parallel N+1</i> vs <i>fully fault-tolerant 2N</i>.</p>

Claim Category	Coverage (Sources & Alignment)	Gaps / Needs	Conflicts / Differences
UPS Topologies – Double-conversion vs Rotary (DRUPS); Battery types.	<p><i>Extensive coverage:</i> DCD article clearly explains static double-conversion UPS (motors/flywheels). CoreSite (Hatzenbuehler) and Schneider data cover Lithium-ion vs VRLA batteries, aligning on Li-ion's ~3x longer life and faster recharge. Sources uniformly highlight that <i>modern data centers predominantly use double-conversion UPS with VRLA, but Li-ion adoption is rising.</i></p>	<p><i>Minor gaps:</i> Could use more vendor-neutral data on operational experience with Li-ion UPS (most info comes from vendor blogs). Also, limited neutral data on DRUPS reliability beyond expert commentary (e.g., no broad stats on DRUPS vs static UPS failure rates). These areas might be bolstered by future case studies.</p>	<p>No major conflicts: All sources agree on technical facts (e.g., Li-ion ~15-year life vs VRLA ~5-year). A slight difference in emphasis: DCD notes rotary UPS are a <i>niche mostly in Europe</i>, which doesn't conflict but adds context. Overall, the narrative is consistent: <i>double-conversion UPS + batteries is standard; rotary/DRUPS are specialized.</i></p>
Generator Systems – Diesel, Gas, Hydrogen; Utility feeds.	<p><i>Well covered:</i> Multiple sources (Rolls-Royce mtu via DCD ², DCF on Generac) confirm diesel generators as the dominant backup (2-3 MW units common) and note emerging natural gas options. Microsoft's report on a 3 MW hydrogen fuel cell trial provides a forward-looking example. EPI/Uptime sources cover utility feed redundancy (Tier IV requiring two substations). Overall, sources agree that <i>diesel gensets with N+1 or 2N are standard, with gas/ hydrogen just starting to appear.</i></p>	<p><i>Gaps:</i> Lack of independent field data on natural gas generator performance in data centers (e.g., latency, reliability vs diesel). Also, hydrogen fuel cell adoption is nascent – we only have a pilot case (Microsoft) – so no neutral stats on reliability/cost for that yet. These are noted as future areas to watch ("no neutral source on hydrogen genset adoption yet").</p>	<p>No direct contradictions: All sources acknowledge diesel as current standard. Some variation in emphasis: e.g., vendor sources tout gas gensets as viable now, while others note gas's slower ramp as a drawback (implied in Rolls-Royce piece). These aren't outright conflicts – just different focus. There's also a <i>practical vs theoretical gap:</i> hydrogen is praised for zero-emission, but Uptime/industry reports caution it's not yet widely adopted (no disagreement, just reality vs future hope).</p>

Claim Category	Coverage (Sources & Alignment)	Gaps / Needs	Conflicts / Differences
Efficiency & PUE – Energy efficiency benchmarks.	<p><i>Strong coverage:</i> Uptime Institute data (via DCK and Uptime's own report) shows average PUE ~1.55 in recent years – indicating industry-wide efficiency has plateaued. Vertiv and others highlight the PUE gap between hyperscalers (~1.1) and typical enterprise (~1.7). All sources align that <i>lower PUE is better and hyperscalers are leading, while the global average is higher</i>. We have both the broad survey data and specific provider examples.</p>	<p><i>Gaps:</i> Could include more segmented data (e.g., PUE by region or by facility size). Also, no source in this pack specifically gives PUE by tier or by cooling type – although we have enough to infer trends. In general, current sources cover the main points; detailed breakdowns (if needed) might come from future DOE/EPA reports.</p>	<p>Conflicts: Mainly in the form of <i>claims vs reality</i>: Hyperscalers (Google/ Facebook) claim ~1.1 PUE, whereas the industry average remains ~1.5+. This isn't a direct disagreement between sources, but a contrast between <i>best-in-class vs typical</i>. It underscores potential skepticism on provider claims – some colos advertise PUE ~1.2, but Uptime data suggests most run higher. No conflicting numbers on the same statistic from two credible sources were found in our research.</p>

1 Why smaller data centers are taking off

<https://www.jll.com/en-us/insights/why-smaller-data-centers-are-taking-off>

2 Balancing act: How demand for data centers can square with environmental impact - DCD

<https://www.datacenterdynamics.com/en/opinions/balancing-act-how-demand-for-data-centers-can-square-with-environmental-impact/>